
1 1

Distributed CnC for C++

Frank Schlimbach
Intel/SSG/DPD/TPI

2nd annual workshop on Concurrent Collections
Houston, 2010/10/06

2 2

CnC for Distributed Systems

•  Let CnC utilize scalability of memory/cache-incoherency
•  Extend Concurrent Collections to generically support distributed

memory
–  KNF (Xn), Sockets, MPI, ??
–  combination of the above

•  Provide a platform for experiments (proof of concept)
–  Opens another non-trivial dimension of scheduling
–  Can we separate the tuning from the domain?

•  Proof-point for abstraction from platform

•  Not meant to be a general solution for distributed computing

•  Minimize extra requirements
–  Minimal incremental changes to existing CnC code
–  Auto/default-partitioning/distribution
–  Keep programming methodology of CnC

•  Utilize standard techniques

3 3

distCnC - Status

•  Prototype implementation
•  Communication through sockets
•  Included in latest what-if release
•  Some limitations compared to shared-memory CnC

4 4

How to

•  #include <cnc/dist_cnc.h>
–  sets #define and declares dist_cnc_init template

•  instantiate CnC::dist_cnc_init< … > object
–  First thing in main, must persist throughout main
–  Template parameters are the contexts used in the program

•  Steps do normal gets and puts

•  serialization of non-standard data types
–  Simple mechanism (similar to BOOST)

•  The information about where to run a step can be provided by a
tuner: int tuner::pass_on(…)
–  return process-id for a given tag

•  Start up of remote processes through script (or manually)

5 5

What happens in a “tag-put”?

putTag

local?

send step

schedule

yes

no

tuner
pass_on

create
step-instance

6 6

What happens in a “item-get”?

getItem available? return item

suspend step

request item
(bcast) continue

yes

no

distCnC is
an Optimist

7 7

What happens in a “item-put”?

putItem
someone
requested

it?

continue

yes

no

To interested
processes only

re-queue
suspended

steps

send item

8 8

Host

Data Residence
ClientX

Context3

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

Context2

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

Context1

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

copy
copy

copy

Context3

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

Context2

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

Context1

TagC1 TagC1 TagC1 TagC1

ItemC1 ItemC1 ItemC1 ItemC1

Step1 Step1 Step1 Step1

9 9

Start up and shut down

•  Magic is in dist_cnc_init<…>
–  Constructor

–  Initializes factory (in charge of creating objects from type-ids)
–  Assigns type-ids to types (contexts only)

–  types of collections are known as they are members of the context
–  Host launches clients, sets up network and continues

execution
–  Clients set up network and go into receiver loop

 they exit when done
–  Clients never leave the constructor!

–  Destructor
–  Host initiates network shut down
–  Clients do nothing

10 10

 Termination detection problem

wait()

Step::execute()

wait()

Step::execute() Step::execute()

Step::

Count messages

flush reset loop

11 11

Communication

Collections
Scheduler

Contexts

Distributor

Collections
Scheduler

Contexts

Distributor

Communicator Communicator

Dynamically
loaded
at runtime

12 12

Communicators

•  Sockets
–  Loaded at runtime
–  Should work across OSes

•  Emulator (incomplete, used to work)
–  Extra thread emulating process
–  requires special linkage

•  MPI (incomplete, prototype implemented)
–  Can be done through loading at runtime
–  With MPICH2, nothing could be required

–  Otherwise mpiexec or similar launches the processes
•  KNF Xn, native SDK (incomplete, core functionality implemented)

–  Can be done through loading at runtime
–  KNF peculiarities when building the binaries

•  System was laid out to allow combining communicators

13 13

Things to keep in mind

•  Collections must be members of contexts (constructed in its ctor)
•  Contexts must be default constructible and prescribe steps there
•  Tags and items must be default constructible
•  Pointers are dangerous

–  Tags must not be of pointer type
–  Items of pointer type need special treatment; better avoid them

•  Global variables are evil and must not be used
(within the execution scope of steps)

•  In contrast to local-only execution, preservation of steps will only
locally suppress redundant step execution.

•  Tag-ranges cannot be distributed yet, they stay locally

•  All this is aligned with CnC’s methodology!

14 14

Possible Futures of distCnC

•  Performance evaluation
•  Alternative communication policies

–  request bundling (lazy)
–  reduce number of broadcasts (user hints, ?)

•  Advanced distribution policies
–  Global View
–  Use data about resources (utilization, HW, …)
–  Declare local availability

•  Allow distributing ranges (parallel_for)
•  User managed data/items/pointers
•  Other communicator layers (MPI, Xn, RUDP)?
•  Heterogeneous and/or hierarchical networks

(e.g. cluster of GPU attached workstations)
•  Adding/removing clients on the fly
•  Fault tolerance

–  Checkpointing? Continue? Restart (partially)?
–  Failure on client, failure on host

15 15

16 16

Execution philosophy
•  Program on host
•  Clients execute steps only

Application
(Host)

Steps
(Client2)

Steps
(Client1)

Steps
(Client5)

Steps
(Client4) Steps

(Client3)
•  N-to-N network
•  Steps might trigger steps on other client processes

17 17

Operation

•  When a context is created, it is cloned on all clients/processes
–  all its collections will be there automatically
–  context creation creates the scheduler, which creates worker

threads

•  When a step-instance is created, the scheduler might decide
that it must be passed on to another process

•  Processes schedule steps upon their reception
•  Optimistic execution

–  optimizes for local availability of items
–  if an item is unavailable, it is requested with all other processes

(broadcast)
–  if a process has (or creates) requested item, it sends it to those

 processes which requested it
–  data/item traffic quickly dominates communication costs

18 18

Example (quickSort)
#include "cnc/dist_cnc.h“
...
void serialize(CnC::serializer & ser)
{
 ser & m_isPartitioned & m_size & m_verbose;
 ser & CnC::array_alloc(m_array, m_size);
}
...
CnC::dist_cnc_init< qs_ctxt > dc_init;
...
struct quick_sort_tuner : public CnC::default_tuner< tag_type, qs_ctxt >
{
 int pass_on(const tag_type & parent, qs_ctxt &) const
 { return parent % 4; }
};
...
 prescribe(ancestryPathSplitTagSpace,
 quick_sort_split_step(), quick_sort_tuner());

19 19

Why Serialization
•  Distributed memory systems require serialization for data transfer
•  Tags and items must be serializable
•  C++ language does not provide serialization (like Java or .NET)
•  CnC framework provides serialization capabilities which

 Make simple things simple
  Built-in serialization of standard data types and ranges
  Array-wrappers with and without memory handling

 Make complex things possible
  All data types can be serialized
  Complex structures (e.g. with pointers or virtual methods)

require
 serialize method or function

 Are easy to use and commonly known (like in Boost)
 Do not provide automatism which might fail

  auto-serialization only upon request (simple declaration)
 compiler issues error if serialization is undeclared

20 20

Serialization
Bitwise serializable (e.g. structs without pointers; default for builtin types)
 WORKLETS_BITWISE_SERIALIZABLE(MyStruct)

Explicitly serializable (default)
 provide void serialize(CnC::serializer &, YourType &)
 or void YourType::serialize(CnC::serializer &)
 one function/method for both serialization and deserialization
 very easy syntax, using operator& (like in Boost)

class MyType {
 int _n;
 float* _arr;
 MySubClass _obj;
 public:
 void serialize(CnC::serializer & buf) {
 buf & _n; // standard data type
 buf & array_alloc(_arr, _n) // automatic memory allocation
 & _obj; // requires its serializability
 }
};

21 21

Launching distributed CnC (sockets)

•  On Host, set CNC_SOCKET_HOST
1.  number_of_clients
2.  name_of_script

1.  Host prints contact string to manually start clients
CNC_SOCKET_CLIENT=<contact_string>

2.  Host launches script twice:
1.  -n must return number of clients
2.  Starting clients with given contact string (e.g. through ssh)
Example scripts for Windows and Linux are provided

Same executable can be used to run on host and clients;
even on a single process without clients.

22 22

Debugging and Profiling

•  Straight forward debugging, no magic mechanisms
–  Use common techniques

–  E.g. totalview with MPI
–  E.g. gdb/idb/Visual Studio with sockets

Hooks for profiling with Intel® Trace Analyzer and Collector
–  Standard use with MPI
–  Built-in hooks in socket runtime and for local-only
–  Convenient macro for manual instrumentation of user code

